Improved Fuzzy Neural Modeling for Underwater Vehicles

نویسنده

  • Sreenatha G. Anavatti
چکیده

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models’ parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance. Keywords—AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Fuzzy Neural Modeling Based on Differential Evolution for Underwater Vehicles

Autonomous Underwater Vehicles (AUVs) have gained importance over the years as specialized tools for performing various underwater missions in military and civilian operations. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV. This proposed model has an input-output relationship based upon neural fuzzy network (NFN) model...

متن کامل

Modeling of underwater vehicle’s dynamics

The paper presents algorithm of underwater vehicle’s dynamics modeling using technique of artificial neural networks. Paper includes mathematical description of used dynamical neurons and basis of its learning process. Next the results of research for real underwater vehicle were presented. Key-Words: artificial neural networks, dynamics modeling, underwater vehicles

متن کامل

Unsupervised Real Time Obstacle Avoidance Technique Based On ARTMAP And BK-Product Of Fuzzy Relation For Autonomous Underwater Vehicle

The article presents ARTMAP and Fuzzy BKProduct approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and obstacles that is might meet in its way and whom AUV might avoid. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BKProduct cont...

متن کامل

Fuzzy neural network-based robust adaptive control for dynamic positioning of underwater vehicles with input dead-zone

This paper proposes a design for a robust adaptive controller for the Dynamical Positioning (DP) of underwater vehicles with unknown hydrodynamic coefficients, unknown disturbances and input dead-zones. First, for convenience of controller design, the Multi-Input Multi-Output (MIMO) system is divided into several Single-Input Single-Output (SISO) systems. Next, a Dynamic Recurrent Fuzzy Neural ...

متن کامل

Modeling and Intelligent Control System Design for Overtaking Maneuver in Autonomous Vehicles

The purpose of this study is to design an intelligent control system to guide the overtaking maneuver with a higher performance than the existing systems. Unlike the existing models which consider constant values for some of the effective variables of this behavior, in this paper, a neural network model is designed based on the real overtaking data using instantaneous values for variables. A fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013